Transform based spatio-temporal descriptors for human action recognition

نویسندگان

  • Ling Shao
  • Ruoyun Gao
  • Yan Liu
  • Hui Zhang
چکیده

Classic transformation methods have been widely and efficiently used in image processing areas, such as image de-noising, image segmentation, feature detection, and compression. Based on their compact signal and image representation ability, we apply the transform based techniques on the video recognition area to extract discriminative information from each given video sequence, and use the transformed coefficients as methods on theKTHand theHollywooddatasets,whichhave been extensively studiedbya lot of researchers. The proposed descriptors, especially the wavelet transform based descriptor, yield promising results on

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Human Action Recognition Based on Improved Spatio-temporal Features

Most of the existed action recognition methods mainly utilize spatio-temporal descriptors of single interest point ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information (PDI) of interest points,a novel motion descriptor is proposed in this paper. The proposed method detec...

متن کامل

Combining Spatio-Temporal Appearance Descriptors and Optical Flow for Human Action Recognition in Video Data

This paper proposes combining spatio-temporal appearance (STA) descriptors with optical flow for human action recognition. The STA descriptors are local histogram-based descriptors of space-time, suitable for building a partial representation of arbitrary spatio-temporal phenomena. Because of the possibility of iterative refinement, they are interesting in the context of online human action rec...

متن کامل

Recognition of Visual Events using Spatio-Temporal Information of the Video Signal

Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...

متن کامل

Genetic Programming-Evolved Spatio-Temporal Descriptor for Human Action Recognition

The potential value of human action recognition has led to it becoming one of the most active research subjects in computer vision. In this paper, we propose a novel method to automatically generate low-level spatio-temporal descriptors showing good performance, for high-level human-action recognition tasks. We address this as an optimization problem using genetic programming (GP), an evolution...

متن کامل

Human Action Recognition and Localization using Spatio-temporal Descriptors and Tracking

In this paper we propose a system for human action tracking and recognition using a robust particle filter-based visual tracker and a novel descriptor, to represent spatio-temporal interest points, based on an effective combination of a new 3D gradient descriptor with an optic flow descriptor. These points are used to represent video sequences using a bag of spatio-temporal visual words, follow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2011